(=]
=
=

A Domain-Specific Language
for Generic Interlocking Models and Their Properties
Linh, H. Vu, Technical University of Denmark
Anne E. Haxthausen, Technical University of Denmark
Jan Peleska, University of Bremen
A (@S e'= <1
f(x+Ax)=§ (I.ATx)f'”(x) 8<“>®__{2 M\‘)A’m

DTU Compute

Department of Applied Mathematics and Computer Science °

Outline

1. Introduction
Background on Interlocking Systems
Motivation

2. IDL: A Domain-Specific Language for Generic Interlocking
Models

3. Conclusions

2 Anne E. Haxthausen, DTU Compute, Technical University of Denmark

=]
=
=

i

14.11.2017

Interlocking Systems

ERTMS niveau 2: Interoperabel jernbane uden ydre signaler

.
votierer 8L —
®) Radiobiox- [
4 Cener
o R(‘a(:v/
[eres [HIY Fastmake
psciee
ralse Eyonsise Togdeekeing Sposkigpes
{Km-sten) (km-sten} . o -

Source: Banedanmark

e An interlocking system is a signalling system component responsible for safe routing

of trains through a railway network.

3 Anne E. Haxthausen, DTU Compute, Technical University of Denmark

(=)
=
=

i

14.11.2017

(=]
=
=

State-of-the-art Architecture of Interlocking Systems

i

Configuration Data

Generic — Specific

Application Application

Product line paradigm:
e Interlocking systems come in product lines.

e Each product line has its own generic application which can be instantiated with
configuration data to specific applications (product instances).

e Configuration data is specified by a track plan and an interlocking table.

4 Anne E. Haxthausen, DTU Compute, Technical University of Denmark 14.11.2017

Specification of Configuration Data — Example

(1) track plan:

(=)
=
=

i

pown 77 -
......... 4 t20 J
mbll mb12 mb21 mbl5
b10 Ld‘ 10 1 t12 Y = Ly
mbl0 1 mb13 mbl4
(2) interlocking table:
id src dst path points signals conflicts
1a mb10 mb13 t10;t11;t12 t11:p;t13:m mb11;mb12;mb20 1b;2a;2b;3;4;5a;5b;6b;7
1b mb10 mb13 t10;t11;t12 t11:p mb11;mb12;mb15;mb20;mb21 1a;2a;2b;3;5a;5b;6a;6b;7;8
2a mb10 mb21 t10;t11;t20 t11:m;t13:p mb11;mb12;mb20 1a;1b;2b;3;5b;6a;6b;7;8
2b mb10 mb21 t10;t11;t20 t11:m mb11;mb12;mb13;mb15;mb20 1a;1b;2a;3;4;5a;5b;6a;6b;7
3 mb12 mb11 t11;t10 t11p mb10;mb20 1a;1b;2a;2b;5a;6b;7
4 mb13 mb14 t13;t14 t13:p mb15;mb21 1a;2b;5a;5b;6a;6b;8
5a mb15 mb12 t14;413;t12 t11:m;t13:p mb13;mb14;mb21 1a;1b;2b;3;4;5b;6a;6b;8
5b mb15 mb12 t14;t13;t12 t13:p mb10;mb13;mb14;mb20;mb21 1a;1b;2a;2b;4;5a;6a;6b;7;8
6a mb15 mb20 t14;t13;t20 t11:p;t13:m mb13;mb14;mb21 1b;2a;2b;4;5a;5b;6b;7;8
6b mb15 mb20 t14;t13;t20 t13:m mb10;mb12;mb13;mb14;mb21 1a;1b;2a;2b;3;4;5a;5b;6a;8
7 mb20 mb11 t11;t10 t11:m mb10;mb12 1a;1b;2a;2b;3;5b;6a
8 mb21 mb14 t13;t14 t13:m mb13;mb15 1b;2a;4;5a;5b;6a;6b

Anne E. Haxthausen,

DTU Compute, Technical University of Denmark

14.11.2017

Modelling Interlocking Systems for Verification

o State-of-the-art FMs for interlocking verification provide a model-generator:

DSL for configuration data GPL for formal models
specification of model
. — —_— model
configuration data generator

6 Anne E. Haxthausen, DTU Compute, Technical University of Denmark

(=]
=
=

i

14.11.2017

(=]
=
=

Modelling Interlocking Systems for Verification

e State-of-the-art FMs for interlocking verification provide a model-generator:

i

DSL for configuration data GPL for formal models
specification of model
. E—— —_— model
configuration data generator

e Inconveniences:

e A new model generator is needed: (1) for each new product line, (2) when
making different model abstractions for the same product line, and (3) when
fixing modelling bugs.

6 Anne E. Haxthausen, DTU Compute, Technical University of Denmark 14.11.2017

Modelling Interlocking Systems for Verification

e State-of-the-art FMs for interlocking verification provide a model-generator:

DSL for configuration data GPL for formal models
specification of model
. E—— —_— model
configuration data generator

e Inconveniences:

e A new model generator is needed: (1) for each new product line, (2) when
making different model abstractions for the same product line, and (3) when
fixing modelling bugs.

o We suggest to let the generator take a 2. argument in a DSL for generic models:
DSL for generic models

specification

of generic
model
DSL for configuration data GPL for formal models
specification of model
. E—— —_— model
configuration data generator

(=)
=
=

i

Advantages of the extra DSL: (1) Easier to read, write and change generic models.

(2) Need only model generator.

6 Anne E. Haxthausen, DTU Compute, Technical University of Denmark

14.11.2017

RobustRailS Verification Method & Tools

¢ In the RobustRailS project (2012-17) supporting the Danish re-signalling

programme, we have a model generator with inputs from two DSLs: IDL and ICL.

(0) IDL specification

Generic
(1.1) ICL i
of configuration data Model
(2.1) model Behavioural Counterexamples
Network odel __ Behaviour
generator Model
! X
;
v
generator (2:2) model
checker
]
v
Interlocking) et v
Table property ——> Propertics
’ generator
(1.2) static Generic
checker Properties
l (0) IDL specification

Well-formed?

For each product line:
e Generic model and properties are defined once-and-for-all in IDL.

o Two-step verification for each product instance, (1) configuration data is defined

in ICL and verified by a static analyser, and (2) models and properties
generated and verified by SMT-based model checking (using induction).

For more details on the method and its applications: Vu, Haxthausen & Peleska: Formal modelling and verification

of interlocking systems featuring sequential release. Science of Comp. Progr., 133, Part 2:91 — 115, 2017.
7 Anne E. Haxthausen, DTU Compute, Technical University of Denmark

(=)
=
=

i

14.11.2017

Outline

2. IDL: A Domain-Specific Language for Generic Interlocking
Models

8 Anne E. Haxthausen, DTU Compute, Technical University of Denmark

(=)
=
=

i

14.11.2017

IDL Specifications — Overview

e major specification elements:
® generic variable declarations (encodings)
® generic transition relation definition
® generic properties (state invariants)
® macros

9 Anne E. Haxthausen, DTU Compute, Technical University of Denmark

(=)
=
=

i

14.11.2017

(=]
=
=

IDL Specifications — Overview

i

e major specification elements:
® generic variable declarations (encodings)
® generic transition relation definition
® generic properties (state invariants)
® macros
e special domain-specific features supporting genericity:
e pre-defined element types (e.g. Point) each representing a set of elements
(e.g. points) in the configuration data
e built-in domain-specific functions for generic references to elements in the
configuration data(e.g. first(r))

9 Anne E. Haxthausen, DTU Compute, Technical University of Denmark 14.11.2017

(=]
=
=

IDL Specifications — Overview

i

e major specification elements:
® generic variable declarations (encodings)
® generic transition relation definition
® generic properties (state invariants)
® macros
e special domain-specific features supporting genericity:
e pre-defined element types (e.g. Point) each representing a set of elements
(e.g. points) in the configuration data
e built-in domain-specific functions for generic references to elements in the
configuration data(e.g. first(r))
e semantics: M : Speci fication — (ConfigData — Model x Properties)
M(spec)(ed) = (M, P), where

e \[= (5,1, R) is a behavioural model with
e state space S: a set of variable assignments o : V' — Value for a
set V' of variables.
e initial condition /: a predicate over variables in V/
e transition relation R: a predicate over variable in V' (pre states)

and V' (post states).
® P is a predicate over variables in V' representing desired state invariants.

9 Anne E. Haxthausen, DTU Compute, Technical University of Denmark 14.11.2017

(=)
=
=

Interlocking System Case Study

i

b % el [, e
T - |
— - Train
Detection | FYA {1rging
Sections

Traditional control loop:
e The interlocking receives route requests from the traffic control center.
e |t sets a requested route, if no conflicting route is already set.

o While setting a route it commands points and signals to the settings required for the
route (specified in the interlocking table).

e Once a route is set, it commands the entry signal to OPEN.
e Once a train enters the route, it sets the (virtual) signal to CLOSED.
e |t releases the route, when the train has finished using it.

10 Anne E. Haxthausen, DTU Compute, Technical University of Denmark 14.11.2017

=]
=
=

i

Generic Variable Declarations — Example

encoding /4 generic variable declarations x/
Linear :
CNT — [INPUT,unsigned int”,0,0,2] /4 occupied counter x/
Point
CNT — [INPUT,unsigned int”,0,0,2] /A occupied counter x/
POS — [INPUT,unsignedint”’,0,0,1] /4 actual position */
CMD — [OUTPUT,unsigned int”,0,0,1] /4 commanded position x/
Signal ::
ACT — [INPUT,unsigned int’,0,0,1] /4 actual aspect =/
CMD — [OUTPUT, unsigned int”,0,0,1] /4 commanded aspect «/
Route :
MODE — [LOCAL,’unsigned int”,0,0,4] / current mode x/

1 Anne E. Haxthausen, DTU Compute, Technical University of Denmark 14.11.2017

(=)
=
=

Instantiation of Generic Variable Declarations =
encoding /4 generic variable declarations */
Linear :
CNT — [INPUT,unsigned int”,0,0,2] /4 occupied counter x/
Point
CNT — [INPUT,unsigned int”,0,0,2] /4 occupied counter x/
POS — [INPUT,unsignedint”’,0,0,1] /4 actual position */
CMD — [OUTPUT,unsigned int”,0,0,1] 4 commanded position x/
Signal ::
ACT — [INPUT,unsigned int’,0,0,1] /4 actual aspect =/
CMD — [OUTPUT, unsigned int”,0,0,1] /4 commanded aspect +/
Route ::
MODE — [LOCAL,unsigned int”,0,0,4] / current mode x/
gives
e state space S = Siinear X -+ X SRoute
e initial condition I = I jnear A - A IRoute
12 Anne E. Haxthausen, DTU Compute, Technical University of Denmark 14.11.2017

Instantiation of Generic Variable Declarations

Instantiation of

(=]
=
=

i

encoding /4 generic variable declarations */

Linear ::

CNT — [INPUT,unsigned int”,0,0,2] /4 occupied counter x/

with

DOWI

b11

N

1
J

mb20

mb12

Ll

0P

20
mb21 mb15

b10
mbf

t10

i+ it
1

M " .E .
w2 gy us ' ualgy bu

mb13 mbid

Linear = { t10, t12, t14, t20 }

gives rise to the following concrete variables:

t10.CNT, t12.CNT, t14.CNT, t20.CNT
all with domain 0..2 and initial value 0.
Slinear = {t10.CNT, t12.CNT, t14.CNT, t20.CNT} — {0..2}
ILinear = t10.CNT =0 A t12.CNT=0 A t14.CNT =0 A t20.CNT =0

13 Anne E. Haxthausen, DTU Compute, Technical University of Denmark

14.11.2017

Macros - Examples

macro /« signal aspects =/
def CLOSED = 0, def OPEN = 1
macro / route modes */
def FREE =0, ..., def LOCKED = 3, def OCCUPIED =4

14 Anne E. Haxthausen, DTU Compute, Technical University of Denmark

(=)
=
=

i

14.11.2017

Generic Transition Relation Definition

General form:

transrel te

where te is a (generic) transition relation expression in one of the forms:

e atomic transition rule: guard-expr — update-expr

e non-deterministic choice: tex [=] tez

e prioritised choice: te1 [>] tea

e quantified transition rule: [=] id : ElementType ® te

For the running example, the transition rule takes the form

transrel

teroute dispatcher [:] (teIXL [>] (tepoints [:] tesignals) [>] tesections)

® where teraute,dispatche'r » terxr, tepoints s tesignu.ls , and tesections consist of
quantified transition rules describing the behaviour of the route dispatcher, the route

controller, and the track elements.

15 Anne E. Haxthausen, DTU Compute, Technical University of Denmark

(=]
=
=

i

14.11.2017

Instantiation of Transition Relation

e Instantiation of transrel te with configuration data yields a transition relation 7 in
predicate form. R is found from te in three steps:

0. Macros are expanded away.
1. Instantiation step: generic constructs are expanded away
¢ Quantified transition rules
are expanded to non-deterministic choices.

e Applications of domain-specific functions are expanded.

2. Semantic transformation step: remaining constructs (, ,and | >|) are
expanded away.

16 Anne E. Haxthausen, DTU Compute, Technical University of Denmark

(=)
=
=

i

14.11.2017

(=)
=
=

i

Example: Quantified Transition Rule for Points

(=] » : Point * [switch_point] ».CMD # ,.POS —» ,.POS’ = ,.CMD)

Instantiation with

DowN Mb20 Up

! 20
b1l mbl2 p21 mb15

polgy w0 “lu—luz e Y] Hu_?f«i' =
e It =8 "] Point={ t11,t13 }

first expands to

(t11.CMD # £11.POS —» £11.POS’ = +11.CMD) [=]
(t13.CMD # £13.POS —» £13.POS’ = £13.CMD)

and then gives
(t11.CMD # t11.POS A £11.POS' = £11.CMD A ¢u11.PoOS) V
(t13.CMD # t13.POS A £13.POS" = £13.CMD A ®113.POS)

where ¢ia.o = Azevyfid.0} (2" = z) is a formula expressing that all variable

instances except id.v remain unchanged by the transition.

17 Anne E. Haxthausen, DTU Compute, Technical University of Denmark 14.11.2017

Example: a Transition Rule for the Interlocking

(=]
=
=

i

([=] » : Route » [train_enters_route |
*.MODE = LOCKED A first(r).CNT > 0

—
/ /
».MODE" = OCCUPIED A sr¢(r).CMD" = CLOSED
Instantiation with
id src dst path points signals conflicts
1a mb10 mb13 t1o;t115t12 t11:p;t13:m mb11;mb12;mb20 1b;2a;2b;3;4;5a;5b;6b;7
8 mb21 mb14 t13;t14 t13:m mb13;mb15 1b;2a;4;5a;5b;6a;6b

(for which Route = { r1a, ..., r8 }) yields the relation:
Rr1a V ...V R,s, where e.g.
Rria =
(r1a.MODE = 3 A t10.CNT > 0) A (r1a.MODE' = 4 A mb10.CMD’ = 0)

A (/\XCV\{rla.MDDEﬁmbio.CMD}(X, = X))

18

Anne E. Haxthausen, DTU Compute, Technical University of Denmark

14.11.2017

(=]
=
=

Generic Properties — Example =
invariant
[no_collision] (Vs : Section ¢ s.CNT < 2)
Instantiation with
Down i UE
i t20 I
mb11l mb12 mb21 mb15
b10 Ld" TR TR —v T Ln” SER t14Ln:&bh"
mbl0 mbl3 mbl4
yields the concrete property:
P =t10CNT < 2A--- At14.CNT < 2
19 Anne E. Haxthausen, DTU Compute, Technical University of Denmark 14.11.2017

=]
=
=

i

Conclusions

Contributions:

e Suggestion to use a domain-specific language for generic interlocking models and
their properties.

e Advantages: easier to read, write and change generic models and properties.

e Presented such a language.

e The language has been given a semantics defining the result of instantiating a
generic specification with configuration data.

e The language and generator tools based on the semantics have been implemented
as part of the RobustRailS tool set using Verified’s RT-Tester tool set as backend.

o These have successfully been applied (1) to specify generic models of the novel
Danish ERTMS 2 based interlocking systems and (2) to instantiate these for
real-world lines and stations. See wu, Haxthausen & Peleska: Formal modelling and verification of
interlocking systems featuring sequential release. Science of Computer Programming, 133, Part 2:91 — 115, 2017.

Future work:

o Investigate to which extend the language could be applied to other classes of
interlocking systems.

o Make extensions/adaptions of the language.

20 Anne E. Haxthausen, DTU Compute, Technical University of Denmark 14.11.2017

21

Anne E. Haxthausen,

Questions?

DTU Compute, Technical University of Denmark

=]
=
=

i

14.11.2017

	Introduction
	IDL: A Domain-Specific Language for Generic Interlocking Models
	Conclusions

